How throughput enhancements dramatically boost 802.11n MAC efficiency--Part II
Probir Sarkar, ARM
EETimes (8/18/2010 12:05 PM EDT)
Overview of MAC Improvements
The primary method used to improve the MAC performance is to amortize the high cost of medium access over a larger number of data frames. First, 802.11n incorporates the mechanisms introduced in 802.11e, a prior amendment to the standard. Though these mechanisms were devised to provide differentiated QoS to MAC users, they also help amortize some of the MAC overheads. It introduced the concept of a Transmit Opportunity (TxOP), whereby a station that acquires the medium, does so for a bounded time period (as opposed to a single frame-ack sequence in the original DCF.) Thus the DIFS wait and backoff countdown steps are required only once in every TxOP duration. Another scheme introduced is the Block Acknowledgement (BA.) Instead of each frame being individually acknowledged, a set of frames may be acknowledged using a BA response. This amortizes the response overhead, over a larger number of data frames. These improvements are shown in the first two rows of Figure (3).
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- How throughput enhancements dramatically boost 802.11n MAC efficiency--Part I
- Turbo encoders boost efficiency of a femtocell's DSP
- Boosting Model Interoperability and Efficiency with the ONNX framework
- ARM's v6 balances power, efficiency
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor