How throughput enhancements dramatically boost 802.11n MAC efficiency--Part II
Probir Sarkar, ARM
EETimes (8/18/2010 12:05 PM EDT)
Overview of MAC Improvements
The primary method used to improve the MAC performance is to amortize the high cost of medium access over a larger number of data frames. First, 802.11n incorporates the mechanisms introduced in 802.11e, a prior amendment to the standard. Though these mechanisms were devised to provide differentiated QoS to MAC users, they also help amortize some of the MAC overheads. It introduced the concept of a Transmit Opportunity (TxOP), whereby a station that acquires the medium, does so for a bounded time period (as opposed to a single frame-ack sequence in the original DCF.) Thus the DIFS wait and backoff countdown steps are required only once in every TxOP duration. Another scheme introduced is the Block Acknowledgement (BA.) Instead of each frame being individually acknowledged, a set of frames may be acknowledged using a BA response. This amortizes the response overhead, over a larger number of data frames. These improvements are shown in the first two rows of Figure (3).
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- How throughput enhancements dramatically boost 802.11n MAC efficiency--Part I
- Turbo encoders boost efficiency of a femtocell's DSP
- Boosting Model Interoperability and Efficiency with the ONNX framework
- ARM's v6 balances power, efficiency
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection