Automotive Architectures: Domain, Zonal and the Rise of Central
By Thierry Kouthon, Rambus
EETimes (February 16, 2022)
Electronics first appeared in cars in 1968 when Volkswagen installed an electronic control unit (ECU) in the VW 1600 sedan’s engine to help control fuel injection. Today, automotive electronics are ubiquitous, controlling or assisting with every aspect of the vehicle’s operation and performance. Electronics now account for over 40 percent of a new vehicle’s total cost, having grown from just 18 percent in 2000, according to Deloitte.
Integration of computing technology into every aspect of the car has transformed how automotive OEMs approach design, engineering and manufacturing. Up until the past decade, vehicle electronics used a flat architecture where embedded ECUs operated together in a limited way. The advancement toward connected cars and AVs led to a divergence in how carmakers approached the communication architecture of a vehicle’s electronics.
Concurrently, the introduction of sensors into the vehicle architecture further accelerated the need for greater computing power to process and analyze the resulting data. These new aspects of the vehicle’s brain led to differing design philosophies toward designing modern vehicles, from the domain architecture to newer zonal and central architectures.
To read the full article, click here
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- The Rise of RISC-V and ISO 26262 Compliance
- Stop-For-Top IP model to replace One-Stop-Shop by 2025... and support the creation of successful Chiplet business
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- M31 on the Specification and Development of MIPI Physical Layer
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design