Attofarad accuracy for high-performance memory design
Claudia Relyea, Mentor Graphics Corp.
EETimes (3/30/2011 9:52 AM EDT)
Relieving the pain of parasitic extraction
The future is here: phone, web browser, email, photo and video, all in one device at your finger tips, simultaneously. The evolution of IC design is in part driven by the demand for more memory with higher performance. Advanced process technologies enable more functionality, higher performance, and portability in chip design through smaller device sizes (Figure 1). These innovations pose interesting design challenges, which include new parasitic extraction issues that are affecting nanometer memory designs.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Cycle Accuracy Analysis and Performance Measurements of a SystemC model
- Memory Design Considerations When Migrating to DDR3 Interfaces from DDR2
- Re-Use of Verification Environment for Verification of Memory Controller
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events