Application Architectures for FPGA-Based Image Processing
Brian Durwood, CEO , Impulse Accelerated Technologies
EETimes (6/19/2014 06:10 PM EDT)
Video and imaging circuitry only changes one way. Higher resolution, higher frame rates, and lower power requirements (particularly for UAV applications) equates to higher capacity and complexity. This is driving some software developers to sample the technique of offloading processor functions to run in parallel in field programmable gate arrays (FPGA).
While not difficult, there can be resource, timing, and other issues that may frustrate a first-time user. New platforms and compilation techniques have made it easier (but not easy) to offload and reconfigure software code to run in hardware. This article is written by experienced professionals in the tools, IP, and platform side of FPGAs -- it is aimed at software developers interested in sampling software-to-hardware compilation. It works to explain the architectural choices that
The disruption of microprocessor-only architectures appears to be increasing. The growth of density, speed, and portability of video/imaging systems is taxing the ability of conventional processors to keep up. GPU, FPGA, and ASSP alternatives are knocking off certain design types -- for good reason. At the "bleeding edge" of frame rates and resolution, the amount of math processed is taxing system architectures. Parallel processing is a theoretical solution if you look at the math. FPGAs are safe, non-exotic parallel processors, mostly within the budget and skill levels of most teams. Software developers are used to HLLs, but often cannot practically use 100% of FPGA features. Using HLL-to-FPGA cross-compilation can often populate gates quicker than hand coding. And HLLs may do things "smarter", although a brilliant hand coder will always beat an average HLL coder in terms of Quality of Results (QoR), but there are thousands of the latter and only a handful of the former.
Different types of system architecture are emerging, including SoC (System-on-Chip), CPU co-processing, and "line-speed" processing.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- A Real-Time Image Processing with a Compact FPGA-Based Architecture
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- High Speed Connected Component Labeling as a Killer Application for Image Recognition Systems by Dynamically Reconfigurable Processor
- Using vector processing for HD video scaling, de-interlacing, and image customization
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions