Get More Reliable Automotive ICs with a Shift Left Design Approach
By Jonathan Muirhead, Siemens EDA
EETimes | May 27, 2025
As the automotive industry races towards a future of connected, autonomous, and electrified vehicles, the complexity of integrated circuits (ICs) powering these innovations is reaching extraordinary levels. Automotive ICs are incorporating an increasing diverse mix of custom and third-party intellectual property (IP), each with unique performance requirements that must be meticulously verified to ensure flawless functionality and reliability.
Limitations of traditional verification methods
Traditional verification methods are increasingly struggling to keep pace with this rising complexity, creating multiple bottlenecks in the design process. These conventional approaches, primarily reliant on manual checking and complex custom design rule checks (DRCs), pull layout verification later in the design cycle when changes are more costly and time-consuming.
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- It's Just a Jump to the Left, Right? Shift Left in IC Design Enablement
- Shift Left for More Efficient Block Design and Chip Integration
- Enhancing VLSI Design Efficiency: Tackling Congestion and Shorts with Practical Approaches and PnR Tool (ICC2)
- Larger IC makers won't shift to foundries, concludes research firm
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection