Analog behavioral models reduce mixed-signal LSI verification time
By Takao Ito, Chief Specialist, Toshiba Corporation
Jun 22, 2007 (12:52 PM) -- Planet Analog
Figure 1a: CPU performance and simulation verification trend; taller (blue) bars are CPU performance, lower (yellow) bars are verification times
Figure 1b: Verification time trend
Jun 22, 2007 (12:52 PM) -- Planet Analog
Smaller process geometries are making it possible to take analog components off the board and incorporate them into the chip together with the digital portions of the designs, increasing the complexity of circuits. Even though there is a rapid increase in today's processor performance, simulation for full-chip verification is still taking a long time (Figure 1a and Figure 1b).
Figure 1a: CPU performance and simulation verification trend; taller (blue) bars are CPU performance, lower (yellow) bars are verification times
Figure 1b: Verification time trend
Current methodologies are no longer sufficient or acceptable, so new verification methods are needed.
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- Efficient Verification and Virtual Prototyping of Analog and Mixed-Signal IP and SOCs Using Behavioral Models
- Mixed-signal SOC verification using analog behavioral models
- Reuse of Analog Mixed Signal IP for SoC Design: Progress Report (Cadence Design Systems)
- Analog & Mixed Signal IC Debug: A high precision ADC application
Latest Articles
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design