Achieving scalability with switch fabrics in CompactPCI
By Tom Cox, RapidIO Trade Association
Jul 15 2007 (16:46 PM), Embedded.com
The requirements of applications for which embedded systems are being designed vary in complexity, cost and performance widely. Presenting extreme challenges for designers of systems that must support not only a wide range of applications, but a continuously changing set of performance requirements.
Whether it's ever increasing bandwidth needs or changing communications standards, protocol based interconnects and switch fabrics offer unique benefits to addressing these issues.
CompactPCI has a rich history in embedded design; a logical step to extending its capabilities is adding a switch fabric architecture to your current product line.
Using the same interconnect across your entire design can leverage your knowledge of the protocol and its interfaces. In fact there are numerous benefits to choosing a single system-wide interconnect included: controlling development costs, design simplification, quick debug and system verification.
Jul 15 2007 (16:46 PM), Embedded.com
The requirements of applications for which embedded systems are being designed vary in complexity, cost and performance widely. Presenting extreme challenges for designers of systems that must support not only a wide range of applications, but a continuously changing set of performance requirements.
Whether it's ever increasing bandwidth needs or changing communications standards, protocol based interconnects and switch fabrics offer unique benefits to addressing these issues.
CompactPCI has a rich history in embedded design; a logical step to extending its capabilities is adding a switch fabric architecture to your current product line.
Using the same interconnect across your entire design can leverage your knowledge of the protocol and its interfaces. In fact there are numerous benefits to choosing a single system-wide interconnect included: controlling development costs, design simplification, quick debug and system verification.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related White Papers
- FPGAs: Embedded Apps : Building mesh-based distributed switch fabrics with programmable logic
- Achieving Better Productivity with Faster Synthesis
- The case for integrating FPGA fabrics with CPU architectures
- Achieving Low power with Active Clock Gating for IoT in IPs
Latest White Papers
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant
- An AUTOSAR-Aligned Architectural Study of Vulnerabilities in Automotive SoC Software
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement