A technical overview of the CE-ATA storage interface
Mohamed A. Salem, Mentor Graphics
(03/20/2006 9:00 AM EST), EE Times
Digital content is driving our society forward. Everywhere you turn there’s a new device with greater capacity ready to consume even more precious storage space. The digital content explosion is rapidly consuming available hard-disk drive (HDD) space and creating a critical storage challenge.
With these dynamics in place, the consumer electronics advanced technology attachment (CE-ATA) interface is quickly emerging as the new storage standard — for good reason. Not only does CE-ATA specifically address the challenges of portable digital storage, but it does so with an intelligent combination of both proven and newly created storage technologies.
CE-ATA is the storage industry’s response to providing an optimized standard interface for small form factor (SFF) storage solutions in handheld, portable, and consumer electronics applications.
This article presents an overview of this state-of-the-art technology and goes underneath the hood of this promising new storage standard. We’ll also look at the various layers of the protocol used for communication between the host and a SFF storage device.
(03/20/2006 9:00 AM EST), EE Times
Digital content is driving our society forward. Everywhere you turn there’s a new device with greater capacity ready to consume even more precious storage space. The digital content explosion is rapidly consuming available hard-disk drive (HDD) space and creating a critical storage challenge.
With these dynamics in place, the consumer electronics advanced technology attachment (CE-ATA) interface is quickly emerging as the new storage standard — for good reason. Not only does CE-ATA specifically address the challenges of portable digital storage, but it does so with an intelligent combination of both proven and newly created storage technologies.
CE-ATA is the storage industry’s response to providing an optimized standard interface for small form factor (SFF) storage solutions in handheld, portable, and consumer electronics applications.
This article presents an overview of this state-of-the-art technology and goes underneath the hood of this promising new storage standard. We’ll also look at the various layers of the protocol used for communication between the host and a SFF storage device.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
- Parameterizable compact BCH codec
Related Articles
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Inside HDR10: A technical exploration of High Dynamic Range
- The Benefits of a Multi-Protocol PMA
- A Survey on the Design, Detection, and Prevention of Pre-Silicon Hardware Trojans
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension