Designing optimal wireless base station MIMO antennae: Part 2 - A maximum likelihood receiver
Noam Dvoretzki and Zeev Kaplan, CEVA
embedded.com (July 22, 2014)
In MIMO antenna design, the maximum likelihood (ML) receiver has significant advantages, but these come at the price of implementation complexity.
The maximum likelihood (ML) receiver estimator solves the following equation:

For the sake of simplicity, let’s use a SISO single transmit and receive antenna configuration as an example. In this case, y is the signal sampled at the receiver, s is the transmitted symbol, and H is the channel impulse response describing the channel between the transmit antenna and receive antenna.
The receiver looks for the transmitted symbol s, which minimizes this absolute value:

in which s belongs to a group of finite values that are defined by the symbol modulation. For 64QAM modulation, for example, s can have 64 different values.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- 10-bit SAR ADC - XFAB XT018
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
Related Articles
- Simulating Trade-offs in W-CDMA/EDGE Receiver Front Ends
- FPGAs: Embedded Apps : OC-48 SONET receiver consumes significantly less logic in FPGA
- The essentials for designing a digital radio receiver
- NEXUS: A Quasi-Parallel On-Chip connection for maximum throughput
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor