Building 3D-ICs: Tool Flow and Design Software (Part 1)
Robert Patti, Tezzaron Semiconductor
EETimes (11/14/2011 11:23 AM EST)
The industry’s current enthusiasm for 3D-ICs is widespread and well warranted, but designing those 3D devices presents a challenge. Normal 2D tool flows, thoroughly honed and refined over many years, nonetheless fail to address some of the critical issues of 3D design. A new 3D design process is evolving gradually from that 2D heritage. When Tezzaron designed its first 3D circuits in 2003, the designers used standard 2D CAD tools and cobbled together a 3D DRC and LVS flow based on scripts. Today there are tools to handle a complete backend flow and strides are being made to enable true 3D design partitioning, synthesis, placement, and routing.
This article discusses the current state of 3D tools and software, describes a working flow, and identifies the areas where more progress is needed. We base the discussion on a specific next-generation demonstration device taken from a design that Tezzaron is prototyping with several partners. The demo design contains an advanced ARM® processor stack, an “off the shelf” FPGA die, and a DRAM memory stack, all assembled onto an active silicon circuit board acting as an interposer.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
Related Articles
- Four ways to build a CAD flow: In-house design to custom-EDA tool
- Structured Analog ASICs using the Mentor Graphics tool flow
- Backend Tool Flow for Coarse Grain Reconfigurable IP Block RAA
- SoC tool flow techniques for detecting reset domain crossing problems
Latest Articles
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
- RoMe: Row Granularity Access Memory System for Large Language Models