Opinion: The yin and yang of designing big chips
In thinking about this viewpoint, it occurred to me that a good place to start is with the EDA industry itself –– what characterizes it, for example? It strikes me that in EDA we are quite different as an industry compared to, say, the medical industry, especially in terms of speed of innovation. If a person in academia dreams up an EDA idea, it can be implemented, tested to ensure that it works, and put on the market reasonably quickly.
However, the proof needed to demonstrate that an EDA innovation works reliably is somewhat less rigorous than the testing and approvals process that medicine and medical technology needs to go through –– and with good reason. This is chiefly because the medical industry deals with people, which make the consequences of something going wrong far more serious.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- MSP7-32 MACsec IP core for FPGA or ASIC
- UHF RFID tag IP with 3.6kBit EEPROM and -18dBm sensitivity
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
Related White Papers
- Bigger Chips, More IPs, and Mounting Challenges in Addressing the Growing Complexity of SoC Design
- Advantages and Challenges of Designing with Multiple Inferencing Chips
- Designing low-power multiprocessor chips
- Designing AI enabled System with SOTIF (Safety Of The Intended Functionality)
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity