Leveraging virtual hardware platforms for embedded software validation
Embedded.com (06/16/08, 12:00:00 PM EDT)
A hybrid approach to configuring a virtual hardware platform enables developers to explore all facets of the system long before it's built.
The increasing pressure on software-development schedules for embedded systems has driven many companies to adopt system prototyping strategies. Typically, these prototypes are built from real hardware either as a number of field programmable gate arrays (FPGAs) on a custom-built board or a pre-built solution such as a hardware emulator.
These hardware-based solutions suffer from a number of limitations, however. High cost, low debugability, and difficult-to-replicate corner cases all combine to limit the overall value of a physical prototype.
A new generation of prototypes is arriving to address these limitations and give software designers even earlier access to a development platform. Virtual hardware prototypes help pull software design earlier in the system schedule and cost less than their hardware equivalents. This article, the first in a two-part series, will discuss the merits of various virtual prototyping approaches. The follow-up article will include a case study that walks you through a virtual prototype's construction and use.
To read the full article, click here
Related Semiconductor IP
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
- PUF Hardware Premium with key wrap and certification support
Related White Papers
- Improving Software Driver Development and Hardware Verification Productivity using Virtual Platforms
- Fast virtual platforms open up multicore software development
- Virtual Prototyping Environment for Multi-core SoC Hardware and Software Development
- Leveraging Virtual Platforms for Embedded Software Validation: Part 2
Latest White Papers
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Data Movement Is the Energy Bottleneck of Today’s SoCs