Video and image processing design using FPGAs
By Brian J. Jent, Altera Corp.
Courtesy of Video/Imaging DesignLine (07/07/2006 0:40 AM EDT)
New trends in video and image processing are forcing developers to re-examine the design architectures they have used previously when considering the numerous tradeoffs of using different architectures that are key to the decision process.
Consumer demand and exciting innovations, such as HDTV and digital cinema, revolve around video and image processing and the rapid evolution of the technology. Major advancements in image capture and display resolutions, advanced compression techniques, and video intelligence are the driving forces behind these technological innovations. At the same time, rapid change in standards and higher resolutions are pushing designers away from off-the-shelf technology.
Resolutions in particular have increased dramatically in just the last few years. The following table illustrates current state-of-the-art resolutions in different end types of applications.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related White Papers
- Using vector processing for HD video scaling, de-interlacing, and image customization
- Video and image processing design using FPGAs
- Implementing digital processing for automotive radar using SoC FPGAs
- Designing low-power video image stabilization IP for FPGAs