Using model-driven development to reduce system software security vulnerabilities
Using model-driven development to reduce system software security vulnerabilities
Guy Broadfoot, Verum Software Technologies
embedded.com (March 09, 2014)
The majority of embedded software developers using traditional programming languages such as C and C++ make use of processes and techniques inherent in the language to improve reliability and reduce security flaws. However, another approach that has met with increasing success is the use of model-driven design (MDD).
The premise of MDD is to raise the abstraction of software development from the low-level imperative programming language that is fraught with opportunities to shoot one’s self in the foot to a higher-level modeling language that reduces the distance between design and implementation and by doing so reduces the flaws that lead to security and safety failures.
Modeling lends itself better to formal proofs of specifications and security policies than do traditional programming languages. Indeed, a side benefit of using some MDD platforms – especially the ones that support formal methods and automatic code generation - is the ability to make formal arguments regarding the correspondence between specification, design, and implementation, a core challenge in all formal approaches. The following will deal with MDD methods that lend themselves to formal analysis and therefore raise the assurance of quality, safety, and security.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
Related White Papers
- System Performance Analysis and Software Optimization Using a TLM Virtual Platform
- Automotive System & Software Development Challenges - Part 1
- Automotive System & Software Development Challenges - Part 2
- It's Not My Fault! How to Run a Better Fault Campaign Using Formal
Latest White Papers
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs