Using dual port interconnect to resolve multiprocessor system bottlenecks
Jan 18 2006 (12:00 PM), Embedded.com
The use of two or more specialized off-the-shelf processors has provided designers with tremendous computing capabilities and speed. With this growing multiple processor trend, however, comes the need for a high-performance system interconnect to bridge the gap between varying data rates, bus widths and I/O standards.
Additionally, on-board traffic management becomes an issue in many data intensive applications and the last thing designers need is a system interconnect that causes a dataflow bottleneck. The use of high speed dual-ports adds value to any design through its blazing data rates (up to 36 Gb/sec), versatile application in a system, and simple implementation using existing standard memory interfaces.
To read the full article, click here
Related Semiconductor IP
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
- PUF Hardware Premium with key wrap and certification support
Related White Papers
- Portable and scalable solution for off-screen video frame composition and decomposition using OpenGL ES
- A Multiprocessor System-on-chip Architecture with Enhanced Compiler Support and Efficient Interconnect
- Using co-design to optimize system interconnect paths
- Managing power in embedded applications using dual operating systems
Latest White Papers
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Data Movement Is the Energy Bottleneck of Today’s SoCs