Top 10 Tips for Success with Formal Analysis - Part 1
Thomas Anderson, Verification Product Management Group Director, Cadence
EETimes (12/12/2011 10:00 AM EST)
Formal analysis, also known as property checking, has made significant progress in the last ten years in terms of ease of use, speed, capacity, and assertion-language standardization. Formal analysis has demonstrated clear value as an important component in the functional verification of both intellectual property (IP) and system-on-chip (SoC) designs. It complements RTL “lint” checking, simulation, simulation acceleration, in-circuit emulation (ICE), equivalence checking, and other verification techniques that are more widely adopted.
The use of formal analysis is not yet as widely adopted as its advocates once predicted it would be. In part, this is because many potential users have unrealistic expectations or try to deploy formal analysis in ways that do not play to its strengths. However, thousands of users on hundreds of IP and SoC projects have used formal analysis successfully, so it is clearly possible to apply the technology in appropriate ways to improve design quality and accelerate verification schedules. Knowing when, where, and how to apply formal analysis is the key.
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- Top 10 Tips for Success with Formal Analysis - Part 2
- Top 10 Tips for Success with Formal Analysis - Part 3
- Top 10 Tips for efficient Perl Scripting for Chip Designers
- Getting the most out of formal analysis
Latest White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU