Shift Left for More Efficient Block Design and Chip Integration
By David Abercrombie, Siemens EDA
EETimes (June 10, 2024)
Block/chip integration is a lot more complicated than it gets credit for. On the face of it, chip integration just involves collecting all the IP and other parts, then gluing them all together. In reality, chip integration is an overlapping series of iterations where the pieces that will make up the chip are still being designed, often by multiple different teams. The chip designer is trying to build something that is dependent on those components, but can’t wait until all the components are done to start the integration because of time-to-market pressures. That means that the chip designer is doing a lot of iterations with snapshots of IP blocks that are in various states of readiness. When they go through the flow, incomplete blocks will have millions of violations, too many to efficiently review taking a lot of time to debug and fix. How can block/chip integration flows change to be more efficient?
What if some of the time-consuming signoff verification tasks could be done quicker and earlier in the design process? Fix DRC errors with signoff accuracy directly from the place and route tool? Configure and manage all the verification jobs like a world-class maestro?
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Rising respins and need for re-evaluation of chip design strategies
- Differentiation Through the Chip Design and Verification Flow
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- AI, and the Real Capacity Crisis in Chip Design
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience