Safety & security architecture for automotive ICs
Yash Saini & Arun Jain (Freescale Semiconductors)
EDN (September 25, 2013)
The automotive industry is changing rapidly to address the stringent requirements for safety and security of vehicular systems. Requirements are not only coming from customers, but regulatory authorities are also pressuring for greater safety and security in vehicles. The requirements include high bandwidth networks, improved data security, enhanced functional safety, and reduced energy consumption.
The ISO 26262 standard defines functional safety for automotive equipment applicable throughout the lifecycle of all automotive electronic and electrical safety-related systems. The standard is an adaptation of the Functional Safety standard IEC 61508 for Automotive Electric/Electronic Systems.
Automotive systems need to be protected against any real-time defects to make it safe for use. Real-time defects can include internal and external errors (e.g., the vehicular communication network).
Automotive data security ranges from vehicle theft protection to enabling secure communication with external devices such as smart phones, MP3 players, or navigation devices. Security also means protection against hackers. After gaining access, a hacker could control everything from the entertainment system to braking.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- PCIe IP With Enhanced Security For The Automotive Market
- Maximizing ESD protection for automotive Ethernet applications
- Functional Safety for Control and Status Registers
- CANsec: Security for the Third Generation of the CAN Bus
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience