Realising the Full Potential of Multi-core Designs
Multi-core chips offer performance, scalability, low-power and flexibility, but are they useable by software engineers?
SIC, ASSP, FPGA and other System on Chip (SoC) designs containing multiple processor cores are becoming the preferred hardware platforms for many applications. Compared with uni-processor architectures, multi-core chips have the potential to provide a far higher level of price-performance. These chips combine specialist engines within a single design, which may include any configuration of multiple CPUs, DSPs and co-processors. With multi-core, a new class of flexible software-programmable designs are permeating the SoC and merchant semiconductor market. According to analysts, the multi-processor SoC segment is forecast to grow at a compound annual rate of around 30 percent.
Click here to read more ....
Related Semiconductor IP
- NPU IP Core for Mobile
- MSP7-32 MACsec IP core for FPGA or ASIC
- 100G / 200G / 400G / 800G / 1.6T MACsec
- 32 bit RISC-V Multicore Processor with 256-bit VLEN and AMM
- UHF RFID tag IP with 3.6kBit EEPROM and -18dBm sensitivity
Related White Papers
- Realising the Full Potential of Multi-core Designs
- The Benefits of a Multi-Protocol PMA
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Reusable debug infrastructure in multi core SoC : Embedded WiFi case study
Latest White Papers
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions