Optimizing data memory utilization
Colin Walls, Mentor Graphics
embedded.com (January 12, 2015)
Optimization is important to embedded software developers because they are always facing limited resources. So, being able to control the size and speed trade-off with code is critical. It is less common for thought to be given to the optimization of data, where there can be a similar speed-versus-size tension. This article looks at how this conflict comes about and what the developer can do about it.
A key difference between embedded and desktop system programming is variability: every Windows PC is essentially the same, whereas every embedded system is different. There are a number of implications of this variability: tools need to be more sophisticated and flexible; programmers need to be ready to accommodate the specific requirements of their system; standard programming languages are mostly non-ideal for the job. This last point points towards a key issue: control of optimization.
Optimization is a set of processes and algorithms that enable a compiler to advance from translating code from (say) C into assembly language to translating an algorithm expressed in C into a functionally identical one expressed in assembly. This is a subtle but important difference.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Optimizing embedded software for power efficiency: Part 3 - Optimizing data flow and memory
- The best of both worlds: Optimizing OCP slave memory behavior
- DDR3 memory interface controller IP speeds data processing applications
- Optimizing high-performance CPUs, GPUs and DSPs? Use logic and memory IP - Part I
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience