Optimizing Automated Test Equipment for Quality and Complexity
By Jeorge Hurtarte, Teradyne (August 28, 2024)
AI is changing our world, driving unprecedented growth and innovation. High-performance chips at the heart of this revolution are marked by increasing complexity, precision requirements and integration of advanced technologies.
This explosive change is creating new demands on digital technology and the automated test systems on which semiconductor manufacturing relies. It is a comprehensive shift that demands flexible testing strategies to address new process architectures, heterogeneous packaging, and the complexities of hardware and software integration.
Today’s semiconductor test industry employs a multifaceted approach to tackle these diverse challenges. By advancing test equipment, integrating AI, adopting new standards, and optimizing test processes, the automated test equipment (ATE) industry is ensuring that it can keep pace with the rapid evolution of semiconductor technology and the needs of manufacturers.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related White Papers
- Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
- SoC Test and Verification -> SoC complexity demands new test strategies
- Shifting from functional to structured techniques improves test quality
- Functional Qualification - An Automated and Objective Measure of Functional Verification Quality