Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
By Seung-Han Lee 1, Jin Hwan Park 2 and Young-Woo Lee 3
1 Department of Electrical and Computer Engineering, Inha University, Incheon, Korea
2 Semiconductor Test Division, Teradyne Inc, MA, USA
3 Program in Semiconductor Convergence, Inha University, Incheon, Korea;
Semiconductor companies have been striving to reduce their manufacturing costs. High parallelism is a key factor in reducing costs during wafer-level testing. Wafer testing is conducted using Automatic Test Equipment (ATE) along with test infrastructures such as the Prober Interface Board (PIB), signal tower, and probe card. In this paper, we present the mechanical and electrical details of a wafer-level test infrastructure designed for higher parallel testing of system-on-chips (SoCs). In previous test infrastructures, a high site count was constrained by the available probe pins on the signal tower for wafer testing. However, the proposed signal tower addresses this bottleneck by utilizing a combination of 620 pin and 731 pin modules. This allows more probe pins to transmit signals from the ATE instrument, enabling multi-site testing. The number of available probe pins increased by 68.96% compared to the state-of-the-art infrastructure, without compromising the application area. The experimental results demonstrate that our proposed test infrastructure is suitable for mass production at the wafer-level, considering factors such as deflection, total compression forces, and electrical specifications.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core
- Rising respins and need for re-evaluation of chip design strategies
- Software Infrastructure of an embedded Video Processor Core for Multimedia Solutions
- An 800 Mpixels/s, ~260 LUTs Implementation of the QOI Lossless Image Compression Algorithm and its Improvement through Hilbert Scanning
Latest White Papers
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor
- Nine Compelling Reasons Why Menta eFPGA Is Essential for Achieving True Crypto Agility in Your ASIC or SoC
- CSR Management: Life Beyond Spreadsheets