Multicore SoCs change interconnect requirements
EE Times (10/20/2008 12:01 AM EDT)
The recent appearance of multicore system-on-chip (SoC) devices has rearranged the boundaries among silicon devices, boards and subsystems. This trend has led to significant changes in chip-to-chip and board-to-board interconnect requirements. Are existing standards-based interconnects ready for this transition?
With the introduction of the microprocessor in the 1970s, simple computing systems were constructed on a single board using a discrete processor, memory controller and I/O interface device. Board-level buses connected the devices; when higher performance was desired, multiple boards were assembled together. Backplanes provided communication between cards using a system-level bus.
These board- and system-interconnect protocols were proprietary. Over time, closed protocols gave way to standardized protocols such as Ethernet, PCI Express or RapidIO.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Using dynamic run-time scheduling to improve the price-performance-power efficiency of heterogeneous multicore SoCs
- Defining standard Debug Interface Socket requirements for OCP-Compliant multicore SoCs: Part 1
- Defining standard Debug Interface Socket requirements for OCP-compliant multicore SoCs: Part 2
- Multicore microprocessors and embedded multicore SOCs have very different needs
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience