Using drowsy cores to lower power in multicore SoCs
Cody Croxton, Ben Eckermann and David Lapp
EETimes (6/29/2011 2:18 PM EDT)
Freescale engineers describe a cascading power management technique that steers tasks to a smaller number of cores during non-peak activity periods so that the idle cores can enter a minimal-power or “drowsy” state. Multicore processing has enabled higher and higher levels of processing capability, but with a price: higher levels of power consumption. Cascading power management is a technique that steers tasks to a smaller number of cores during non-peak activity periods so that the idle cores can enter a minimal-power or “drowsy” state.
When packet traffic increases again, the technique allows a rapid return to fully loaded conditions. Cascading power management is not simply a power-saving technique; it is also a workload management technique that distributes packet processing in a more efficient way.
To read the full article, click here
Related Semiconductor IP
- MIPI SoundWire I3S Peripheral IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
Related White Papers
- How NoCs ace power management and functional safety in SoCs
- An IP core based approach to the on-chip management of heterogeneous SoCs
- Get the right mix when integrating Power Management Solutions into SoCs
- Using dynamic run-time scheduling to improve the price-performance-power efficiency of heterogeneous multicore SoCs
Latest White Papers
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics
- In-DRAM True Random Number Generation Using Simultaneous Multiple-Row Activation: An Experimental Study of Real DRAM Chips
- SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference