How to reduce board management costs, failures, and design time
Shyam Chandra, Lattice Semiconductor
EETimes (10/12/2010 8:40 AM EDT)
In order to meet the demands of increased functionality, performance, and reduced power, many modern circuit boards use highly integrated CPUs, ASSPs, ASICs, and memory devices to implement the circuit board’s main function (the payload function).
Boards of this complexity are particularly common in equipment designed for communications infrastructures, computer servers, and higher end industrial and medical systems. Because the ICs on the board are usually fabricated with fine transistor geometries, they require multiple power supply rails with tight tolerances to operate. Typically, seven to ten supplies are needed in a complex circuit board, with higher numbers not unusual.
The management of these supplies – along with other system management tasks – is increasing in complexity and cost. This is leading many board designers to ask: "How can I reduce the cost and complexity associated with implementing board management?"
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- How to Reduce FPGA Logic Cell Usage by >x5 for Floating-Point FFTs
- How to design secure SoCs, Part II: Key Management
- Tools For Reprogrammability -> Programmable ASICs to reduce costs
- How to Integrate Flash Device Programming and Reduce Costs
Latest White Papers
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor