How to reduce board management costs, failures, and design time
Shyam Chandra, Lattice Semiconductor
EETimes (10/12/2010 8:40 AM EDT)
In order to meet the demands of increased functionality, performance, and reduced power, many modern circuit boards use highly integrated CPUs, ASSPs, ASICs, and memory devices to implement the circuit board’s main function (the payload function).
Boards of this complexity are particularly common in equipment designed for communications infrastructures, computer servers, and higher end industrial and medical systems. Because the ICs on the board are usually fabricated with fine transistor geometries, they require multiple power supply rails with tight tolerances to operate. Typically, seven to ten supplies are needed in a complex circuit board, with higher numbers not unusual.
The management of these supplies – along with other system management tasks – is increasing in complexity and cost. This is leading many board designers to ask: "How can I reduce the cost and complexity associated with implementing board management?"
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- How to Reduce FPGA Logic Cell Usage by >x5 for Floating-Point FFTs
- Tools For Reprogrammability -> Programmable ASICs to reduce costs
- How to Integrate Flash Device Programming and Reduce Costs
- How to reduce costs by integrating PCI interface functions into CPLDs
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference