How to prevent FPGA-based projects from going astray
Adam Taylor, E2V
embedded.com (February 22, 2017)
During the course of my career, I have been involved with developing a number of FPGA designs for some really interesting projects. Sadly, I have also been involved in rescuing several FPGA designs that have gone badly astray. As I worked on these problem designs, it became apparent that -- although the target applications and the members of the development teams were different -- the designs shared some common points that doomed them to failure before the first engineer even sat down to write the first line of HDL code.
With this in mind, I thought I would run through five common issues that I've observed as part of rescuing these projects. These issues are as follows:
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- Going from 8- to 32-bit MCUs takes tools
- How to simplify power design development and evaluation for FPGA-based systems
- Going from GDSII to OASIS
- How to improve FPGA-based ASIC prototyping with SystemVerilog
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference