How to create energy-efficient IIoT sensor nodes
by Noel O’Riordan and Tommy Mullane, S3 Semiconductors
When you’re designing sensor node devices destined for the industrial internet of things (IIoT), chances are they need to be battery-powered. And given the number of these expected to be deployed, and their often-remote locations, changing or charging a battery frequently isn’t an option. Your device, therefore, needs to be exceptionally energy-efficient, which demands you design everything from the overall system to its individual circuits to minimize energy use.
The challenge is that anyone energy-related design decision is likely to have knock-on effects elsewhere. And then there are less obvious things that can play havoc with battery life. For example, while we know the RF transmitter will generally be a big energy user, it can sometimes be the receiver or power consumption during sleep mode that causes the battery to drain fast. We’ll explore this below.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- How to reuse your IIoT technology investments - now
- Utilizing UWB in ultra-low power ZigBee wireless sensor nodes
- Improving Inter Integrated Circuits - From Sensor Hubs to Platform Management Solutions
- How to Reduce FPGA Logic Cell Usage by >x5 for Floating-Point FFTs
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core