FPGAs offer cost-effective, flexible solutions for remote radio heads
Sumit Shah, Xilinx
EETimes (4/18/2013 2:01 PM EDT)
The explosion of smartphone and tablets is putting exponential strain on wireless networks. Whereas smartphones took about eight years to reach a 10 percent market adoption point, usage jumped to 40 percent in less than three years following the introduction of the iPhone in 2007, according to MIT’s quarterly Technology Review. That rapid growth continues. This user demand has pushed network operators and the OEMs supplying their equipment to cover a broad spectrum of wireless technologies - including GSM, CDMA2000, TD-SCDMA, UMTS and LTE – all while boosting capacity by using new frequencies, higher bandwidth and greater numbers of cell sites to meet the increasing demands.
Competitive pressures and rapid demand are forcing a need to get new products into market at ever faster rates. The newest generation of field programmable gate arrays (FPGAs) – manufactured at the proven 28nm process technology node – offer tighter integration, a reduced BOM costs and increased operational efficiency. By using off-the-shelf intellectual property (IP) and Xilinx 7 series FPGAs and Zynq-7000 All Programmable SoC devices, OEMs can meet shifting market demands while avoiding the huge upfront investment of $20 million or more required to spin a new, fixed architecture device. These FPGA and SoC devices are tightly integrated to deliver more system functions with a focus on programmability, the highest bandwidth and parallel processing available to leverage programmable logic, fewer components, lower power consumption and accelerated design productivity.
To read the full article, click here
Related Semiconductor IP
- ARC4 Core for Xilinx FPG
- Xilinx Virtual Cable
- Xilinx HMC Controller
- Xilinx MicroBlaze Trace Core (XMTC)
- Xilinx Kintex 7 NVME HOST IP
Related White Papers
- Designing remote radio heads (RRHs) on high-performance FPGAs
- High-Performance DSPs -> Software-defined radio infrastructure taps DSP
- Embedded Systems: Programmable Logic -> Common gateway networks enable remote programs
- Embedded Systems: Programmable Logic -> FPGAs don remote reprogram habits
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity