SoC tool flow techniques for detecting reset domain crossing problems
Arjun Pal Chowdhury, Neha Agarwal, and Ankush Sethi, Freescale India
embedded.com (August 13, 2014)
In a sequential system on chip designs, if the reset of source register is different from the reset of destination register, even though the data path is in same clock domain, this can cause an asynchronous crossing path to occur which can cause metastability at destination register [1].
This paper proposes a verification tool flow which can be used with any SoC structural verification tool to detect such reset domain crossing (RDC) problems. It also describes some techniques to make the SoC design tools you use intelligent enough to weed out false violations.
To read the full article, click here
Related Semiconductor IP
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
- PUF Hardware Premium with key wrap and certification support
Related White Papers
- Dealing with SoC metastability problems due to Reset Domain Crossing
- Understanding Clock Domain Crossing Issues
- Clock Domain Crossing Glitch Detection Using Formal Verification
- The Challenge of the Clock Domain Crossing verification in DO-254
Latest White Papers
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Data Movement Is the Energy Bottleneck of Today’s SoCs