Debugging hard faults in ARM Cortex-M0 based SoCs
Shashikant Joshi & Hanumanthaiah Shruti (Cypress Semiconductors)
embedded.com (February 08, 2017)
Programmable system-on-chip (PSoC) architectures integrate a wide range of capabilities, including MCU cores like the Cortex-M0, programmable analog blocks (PAB), programmable digital blocks (PDB), programmable interconnect and routing, a wide range of interfaces and peripherals, and advanced capabilities such as capacitive touch sensing. These architectures over many advantages over traditional microcontrollers and can substantially reduce design time and system bill of materials (BOM) cost.
As the complexity of programmable system-on-chip architectures and their MCU increases, so do the issues that can occur at each stage of design. One common issue developers face in Cortex-M0-based embedded systems is the hard fault. In some cases, we might get lucky and be able to quickly locate the source of the hard fault. However, most of the time chasing down a hard fault can be very time consuming. In this article, we will discuss some common errors programmers make and how to debug the hard fault caused by these errors.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related White Papers
- Designing with ARM Cortex-M based System-On-Chips (SoCs) - Part I: The basics
- Method for Booting ARM Based Multi-Core SoCs
- Verification of IP Core Based SoC's
- Adapter Based Distributed Simulation of Multiprocessor SoCs Using SystemC
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference