Data acquisition systems and SoCs - A guide
Asha Ganesan, Cypress
EDN (August 26, 2013)
Data acquisition systems (abbreviated with the acronym DAS or DAQ) measure real world signals (temperature, pressure, humidity etc.) by performing appropriate signal conditioning on a raw signal (amplification, level shifting, etc.), and then digitizing and storing these signals. This digital signals can then be transmit to another digital system for further processing, usually on a periodic basis.
Examples of data acquisition systems include such applications as weather monitoring, recording a seismograph, pressure, temperature and wind strength and direction. This information is fed to computers, which then predict natural events like rain and calamities like earthquakes and destructive winds. An example of a DAS in the medical field is a patient monitoring system that tracks signals like an ECG (Electro-cardiogram) or EEG (Electro-encephalogram).
A typical DAS consists of the following components:
- Sensors that convert real world phenomenon to equivalent electrical analog signals
- Signal conditioning circuitry that alters signals from the sensor to a form, which can be digitized
- Analog to digital converters that convert conditioned analog signals to a digital representation
- Store and forward memory, which is used to store digital signal streams for forwarding to another system at a later time
- A communication interface over which the digital streams are transferred to the other system
- A microprocessor system or a microcontroller to sequence and control all of the other components.
Figure 1 shows a block diagram of a basic data acquisition system. The details of these internal blocks are explained in the next section.
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- The Hitchhiker's Guide to Programming and Optimizing CXL-Based Heterogeneous Systems
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- Design trade-offs of using SAR and Sigma Delta Converters for Multiplexed Data Acquisition Systems
Latest White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU