Basics of SRAM PUF and how to deploy it for IoT security
Geert-Jan Schrijen, Intrinsic-ID
embedded.com - March 24, 2021
This article covers the basics of what an SRAM PUF (physical unclonable function) is and how it works, as well as the functionality it offers in internet of things (IoT) security as the trust anchor for any device.
In any given situation, security starts with trust. When you have an alarm system in your house, you give out its pin code only to people you trust. Whether it is a family member or your friendly neighbor, without trust you do not share your secret. And that is how it is supposed to be!
This matter of trust also translates to personal identification. Here the foundation of trust comes from formal documents, such as a passport or a birth certificate. However, these documents need to be “securely linked” to a specific person. This typically works with human biometrics. ID papers all have something that ties the document to the right person, whether it is merely a picture of the person or biometric identification through fingerprints, as in modern passports. So, the biometrics are the security anchor on which a system with permissions (do you get to cross the border?) is built.
This security anchor is necessary to prevent a simple document from being copied and used by unauthorized parties. If the document is anchored to something that cannot be copied or cloned, like fingerprints, the security becomes strong enough to turn a relatively simple document into a powerful authentication tool.
To read the full article, click here
Related Semiconductor IP
- Bulk 40ULP Single Port SRAM with low power retention mode, high speed pins on 1 side
- Bulk 40ULP single port SRAM Compiler - ultra low power, low power retention mode
- Single Port SRAM with low power retention mode, high speed pins on 1 side
- Single port SRAM Compiler - low power retention mode and column repair
- Single port SRAM Compiler - low power retention mode
Related White Papers
- Last-Time Buy Notifications For Your ASICs? How To Make the Most of It
- How a voltage glitch attack could cripple your SoC or MCU - and how to securely protect it
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- How to achieve better IoT security in Wi-Fi modules
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience