Apply memory BIST to external DRAMs
Etienne Racine, Mentor Graphics
EDN (October 2, 2013)
3D-stacked designs containing a mix of separate logic and memory die represent a somewhat new application for memory BIST (built-in self-test), compared to the more conventional, single-die embedded SRAM implementations. Gaining access to a DRAM requires predefined customized memory operations. EDA tools must make this definition step as simple as possible, while ensuring it can be reused across designs and over time. We also see that traditional test algorithms are less efficient on DRAMs, so they must be reconsidered in a 3D-IC context.
Comparing SRAMs and DRAMs
For testing SRAMs, EDA flows can automatically detect embedded memories and assign each instance to a specific BIST controller. This assignment depends on the chip architecture and includes user-defined parameters such as test time, power consumption limits, etc. A BIST engine typically tests many SRAMs in parallel through a simple interface (e.g., multiplexors).
To test external DRAMs used in 3D-ICs, the situation is, however, quite different. It often requires a new IP block, called the PHY (physical interface), which sits between the core logic and the memory. This PHY is reasonably complex and may also contain its own embedded I/O. A single BIST controller is then dedicated to test that specific PHY.
To read the full article, click here
Related Semiconductor IP
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
- PUF Hardware Premium with key wrap and certification support
Related White Papers
- Implementing custom DDR and DDR2 SDRAM external memory interfaces in FPGAs (part 1)
- Which DDR SDRAM Memory to Use and When
- The Answer to Non-Volatile Memory Security Issues at Advanced Nodes: Go Volatile!
- How to accelerate memory bandwidth by 50% with ZeroPoint technology
Latest White Papers
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Data Movement Is the Energy Bottleneck of Today’s SoCs