Android hardware-software design using virtual prototypes - Part 2: Building a sensor subsystem
Achim Nohl, Synopsys
Embedded.com, November 7, 2012
Editor’s Note: In the second of a three-part series of articles on virtual prototyping, Achim Nohl explains how to use the Synopsys Virtualizer Development Kit (VDK) and describes the hardware/software integration flow for a sensor subsystem for use in an Android mobile device. For the remainder of this series, we will illustrate virtual prototyping usage and early software development by means of a brief case study. The case study is centered on a multi-function sensor controller subsystem which supports an accelerometer, magnetic field, orientation, gyroscope, light, pressure, temperature, and proximity.
The subsystem embeds an ARM Cortex- M3 microcontroller along with generic peripherals such as an interrupt controller, memories, GPIOs, and I2C. The sensor subsystem runs dedicated firmware to proxy the requested sensor data into a shared memory mailbox for communication with the main CPU. The main CPU, an ARM Cortex-A series CPU, runs Linux and Android.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
- Parameterizable compact BCH codec
Related Articles
- Physical Design Exploration of a Wire-Friendly Domain-Specific Processor for Angstrom-Era Nodes
- A Resource-Driven Approach for Implementing CNNs on FPGAs Using Adaptive IPs
- A logically correct SoC design isn’t an optimized design
- How virtual prototypes speed SoC hardware design
Latest Articles
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes