Implementing analog functions in rugged, rad-hard FPGAs
Allan Chin and Luciano Zoso, Stellamar
EETimes (2/11/2013 2:21 PM EST)
FPGAs have already changed the cost/reliability paradigm for embedded systems in high-reliability applications, thanks to advances in hardness and power reduction. But on many embedded applications for high-reliability markets, designers depend on a number of peripheral analog components such as analog-to-digital and digital-to-analog converters to talk to the real world. Other system components such as phase-locked loops (PLLs) and DC/DC converters are usually required to complete a system design. These peripherals impact overall cost, size and reliability. Peripheral analog parts can also be challenging to work with and to source for radiation environments, as an example.
To further leverage the power of FPGAs, military-and-aerospace engineers are actively looking for ways to integrate many of these analog functions onto the FPGA. Synthesizable, digital IP cores that replace some analog functions now exist, allowing mil/aero designers to implement ADC, DAC, DC/DC controller and clock-multiplier functions in fully digital processes such as FPGAs. Not only does this new ability leverage the advantages of FPGAs, it also helps mitigate many challenges of using analog components in high-reliability applications.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- How FPGAs are breathing new life into the analog video format
- FPGAs solve challenges at the core of IoT implementation
- Analog and Power Management Trends in ASIC and SoC Designs
- The common silicon issues in analog IP integration
Latest White Papers
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity