An FPGA design flow for video imaging applications
July 03, 2007 -- pldesignline.com
FPGAs are increasingly being used in a variety of video and image processing applications, primarily due to the increased complexity and performance requirements that such applications demand. This article examines some of the challenges faced by designers who are implementing video applications in FPGAs and details how some of the tools provided by FPGA vendors can be used to alleviate key design challenges. To better understand these challenges, some of the trends driving the need for ever higher performance and thereby FPGA usage in video applications will be explored.
Trends driving video applications to FPGAs
FPGAs are the ideal platform for implementing digital signal processing (DSP) algorithms with high computational requirements (i.e. high performance), since the ability of an FPGA fabric to lay down multiply-accumulate (MAC) resources in parallel can enable DSP performance that is at least an order of magnitude higher than programmable digital signal processors (DSPs).
Two key trends dominate the video design landscape today that pushes the envelope of available DSP power. One is the move inexorably towards high definition (HD) in everything – from displays and surveillance cameras to medical and military imaging systems. Processing a frame of HD video is approximately 4× to 6× the amount of data being processed when compared to a simple definition (SD) frame. This increased need for high definition data processing is driving video applications into higher performance platforms such as FPGAs.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Can 10 Gbps Ethernet be an Embedded Design Solution?
- Can 10 Gbps Ethernet be an Embedded Design Solution?
- Generating High Speed CSI2 Video by an FPGA
- Paving the way for the next generation audio codec for the True Wireless Stereo (TWS) applications - PART 1 : TWS challenges explained
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience