Implementation of the AES algorithm on Deeply Pipelined DSP/RISC Processor
Embedded.com (08/19/08, 02:18:00 PM EDT)
In the modern digital computer world, cryptography algorithms play an important role in securing important data. In early days, cryptography was used to protect classified information in government and military applications. Now, with Internet access is a common commodity, government agencies, various industries ranging from Hollywood to corporate, financial institutions and universities make widespread use of cryptography algorithms in everything from storage management to web based online transaction processing, etc.
Various cryptography algorithms are used in practice, depending on the application type and the required level of security. The block diagram of a general secured communication system is shown in Figure 1 below.
Figure 1: Communication security modules (a) encryption (b) decryption
For communications security, plan text is encrypted using a secret (or shared) key at the transmitter side and then decrypting the ciphered text at the receiver side using the same key. In this secured communication system, tapping the data by adversaries is almost impossible unless he/she gets the secret key pattern. In the present day, an embedded processor is commonly used to implement the physical layer of such a secured communication system.
To read the full article, click here
Related Semiconductor IP
- AES
- AES
- Inline cipher engine for PCIe, CXL, NVMe, 5G FlexE link integrity and data encryption (IDE) using AES GCM mode
- AES GCM IP Core
- AES 256 encryption IP core
Related White Papers
- SoCs: DSP World, Cores -> Bridging chasm between DSP, RISC
- Performance analysis of 8-bit pipelined Asynchronous Processor core
- Designing an Efficient DSP Solution: Choosing the Right Processor and Software Development Toolchain
- RISC-VLIW IP Core for the Airborn Navigation Functional Oriented Processor