Achieving multicore performance in a single core SoC design using a multi-threaded virtual multiprocessor: Part 2
By Kevin D. Kissell and Pete Del Vecchio, MIPS Technologies
Nov 27 2006 (0:30 AM), Embedded.com
The key to the Virtual Processor Element (VPE) approach used in the MIPS 34K core is a set of extensions of the processor's basic instruction set architecture, rather than a specific set of hardware features to enable efficient multi-threading. In the case of the 34K core, the MT ASE is an application-specific extension of the MIPS32/MIPS64 instruction set and privileged resource architecture, meaning that it is a true architectural superset.
In the light of all this, the MIPS MT ASE strives to provide a framework both for the management of parallel threads on the same CPU and for the management of parallel threads across multiple cores, and indeed for the migration of threads from one multi-threaded processor to another.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Achieving multicore performance in a single core SoC using a multi-threaded virtual multiprocessor: Part 1
- Internal JTAG - A cutting-edge solution for embedded instrument testing in SoC: Part 2
- A Virtual Reality Camera Design with 16 Full HD Video Inputs Sharing a Single DRAM Chip
- SOC Stability in a Small Package
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience