20nm Dilemma Explained
Handel Jones, International Business Strategies Inc.
EETimes (4/4/2014 06:00 PM EDT)
Fully depleted silicon-on-insulator is the best solution for the 28nm and 20nm technology nodes because of its lower cost and leakage and higher performance than bulk CMOS.
The cost of a 100mm2 die in FD SOI at 28nm is 3.0% lower than bulk CMOS and 13.0% at 20nm due to higher parametric yield as well as lower wafer cost. The data also shows that an FD SOI die with comparable complexity to bulk CMOS is 10% to 12% smaller.
The combination of the smaller die area and higher parametric yield should give an equivalent product a 20% cost advantage at 20nm for FD SOI compared to bulk CMOS. In addition, at 28nm FD SOI has performance that is 15% higher than 20nm bulk CMOS. (See chart below.)
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- SoC Configurable Platforms -> SoC opportunities confront an old dilemma
- The embedded systems hardware ‘make or buy’ dilemma
- The Design Dilemma: Multiprocessing Using Multiprocessors and Multithreading
- Interconnect modeling at 20nm - more of the same or completely different?
Latest White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU