20nm Dilemma Explained
Handel Jones, International Business Strategies Inc.
EETimes (4/4/2014 06:00 PM EDT)
Fully depleted silicon-on-insulator is the best solution for the 28nm and 20nm technology nodes because of its lower cost and leakage and higher performance than bulk CMOS.
The cost of a 100mm2 die in FD SOI at 28nm is 3.0% lower than bulk CMOS and 13.0% at 20nm due to higher parametric yield as well as lower wafer cost. The data also shows that an FD SOI die with comparable complexity to bulk CMOS is 10% to 12% smaller.
The combination of the smaller die area and higher parametric yield should give an equivalent product a 20% cost advantage at 20nm for FD SOI compared to bulk CMOS. In addition, at 28nm FD SOI has performance that is 15% higher than 20nm bulk CMOS. (See chart below.)
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- SoC Configurable Platforms -> SoC opportunities confront an old dilemma
- The embedded systems hardware ‘make or buy’ dilemma
- The Design Dilemma: Multiprocessing Using Multiprocessors and Multithreading
- Interconnect modeling at 20nm - more of the same or completely different?
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience