The embedded systems hardware ‘make or buy’ dilemma
Ready-made CPU modules are making increasing sense for handling technology complexity and unpredictable market conditions.
Today’s 16 and 32-bit microcontrollers have become so complicated that growing numbers of embedded developers are questioning whether it’s worthwhile building a system from scratch or whether they’d be better off buying-in the more tricky bits ready-made. The continuing unpredictable market conditions are adding further pressures to examine what makes sense to do in-house.
One option is to just buy all the hardware off-the-shelf and concentrate on the application. Another idea is to extend the life of a design by adopting a standard platform that you can re-use for various different projects. Particularly interesting is the rise of high-density CPU modules. These are CPUs plus sub-systems that come on a tiny board or, for higher volumes, a multi chip module (MCM) that can be treated like a big chip. The advantage is that someone else has done the difficult part of the design and so you can often get away with a relatively simple PCB for the rest of the system.
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- Last-Time Buy Notifications For Your ASICs? How To Make the Most of It
- The Impact of Make vs Buy Decisions for Memory Interface Solutions
- To develop or buy a Verification IP
- Buy or Build an RTOS: Does it Matter for Medical Devices?
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core