Weebit Nano partners with University of Florida's Nino Research Group to examine effects of radiation on Weebit ReRAM
Initial studies confirm ReRAM’s tolerance to high levels of gamma radiation
HOD HASHARON, Israel – March 7, 2023 – Weebit Nano Limited (ASX:WBT), a leading developer of advanced memory technologies for the global semiconductor industry, is partnering with the Nino Research Group (NRG) in the University of Florida’s Department of Materials Science and Engineering to study the effects of radiation on Weebit’s resistive random access memory (ReRAM) technology. Results of initial studies confirm Weebit ReRAM arrays are tolerant to high radiation levels.
Being conducted by NRG, Weebit, and Weebit's R&D partner CEA-Leti, initial studies show that Weebit ReRAM maintains data integrity and memory functionality after being subjected to doses of gamma irradiation exceeding the most demanding requirements. The group will next measure performance of the Weebit ReRAM module under a mixed radiation environment in real-time at the University of Florida Training Reactor (UFTR).
Weebit Nano CEO Coby Hanoch said, “There is growing interest in our ReRAM for applications in high-radiation environments, including aerospace and medical. Industry studies have shown ReRAM technology is inherently tolerant to the radiation that semiconductor chips encounter in those settings. Our work with NRG will enable us to demonstrate the radiation tolerance of Weebit ReRAM and gain additional insights into its robustness.”
NRG was established in 2003 by Juan C. Nino, Ph.D., professor of materials science and engineering at the University of Florida. The group focuses on developing advanced functional materials for sustainable energy solutions. Their research also includes investigating electronics under extreme environments, neuromorphic neural networks, energy conversion and storage, and semiconductors and scintillators for radiation detection.
Commenting on the study, Dr. Nino said, “We know ReRAM technology to be relatively insensitive to ionizing radiation, single event effect damage, and displacement damage given there is no direct interaction between radiation and the storage mechanism of the technology. Our initial results show that Weebit ReRAM technology is very resilient to high radiation levels, and we look forward to leveraging the UFTR to conduct additional tests in mixed radiation environments.”
Read the whitepaper based on the initial studies: https://tinyurl.com/dbk2nmwv
About the MSE Dept. at the University of Florida
The Department of Materials Science and Engineering at the University of Florida is the top-ranked program in the state and is one of the oldest in the country. The department offers a hands-on approach to engineering steeped in a foundation of theoretical and science education that bridges engineering, chemistry and physics. The goal is to educate well-rounded and successful engineers through design labs where students work on solving real problems facing society. The department also encompasses the Nuclear Engineering program, which is the top nuclear engineering program in the state and the only Florida university that offers graduate degrees in nuclear engineering. It is home to the UF Training Reactor (UFTR), one of only 31 in the country. The UFTR is one of two reactors in the southeast and offers a unique opportunity for nuclear and nuclear materials testing under harsh environments. See https://mse.ufl.edu.
About Weebit Nano Limited
Weebit Nano Ltd. is a leading developer of advanced semiconductor memory technology. The company’s ground-breaking Resistive RAM (ReRAM) addresses the growing need for significantly higher performance and lower power memory solutions in a range of new electronic products such as Internet of Things (IoT) devices, smartphones, robotics, autonomous vehicles, 5G communications and artificial intelligence. Weebit’s ReRAM allows semiconductor memory elements to be significantly faster, less expensive, more reliable and more energy efficient than those using existing Flash memory solutions. As it is based on fab-friendly materials, the technology can be quickly and easily integrated with existing flows and processes, without the need for special equipment or large investments. See www.weebit-nano.com
Related Semiconductor IP
Related News
- Weebit Nano and Silvaco Form Development Program Partnership to Create ReRAM Models and Design Tools
- Weebit Nano and Silvaco Develop New Simulation Capabilities to Increase ReRAM Adoption
- Weebit Nano continues ReRAM innovation: Files new patents optimising programming of ReRAM
- Weebit Nano successfully demonstrates integration of selector with ReRAM cell for the stand-alone memory market
Latest News
- How hardware-assisted verification (HAV) transforms EDA workflows
- BrainChip Provides Low-Power Neuromorphic Processing for Quantum Ventura’s Cyberthreat Intelligence Tool
- Ultra Accelerator Link Consortium (UALink) Welcomes Alibaba, Apple and Synopsys to Board of Directors
- CAST to Enter the Post-Quantum Cryptography Era with New KiviPQC-KEM IP Core
- InPsytech Announces Finalization of UCIe IP Design, Driving Breakthroughs in High-Speed Transmission Technology