Defining the software/hardware interface: A new paradigm enabled by Codasip Studio Fusion
Before there was a mainstream open standard Instruction Set Architecture (ISA) like RISC-V, a computer processor’s software/hardware interface was generally defined by processor architects. The decisions of the instructions set, multi-issue, out-of-order, speculation, branch prediction or multi-core were to accelerate general purpose or a class, such as Digital Signal Processing (DSP), of computing. The optimal solutions required a deep understanding of the processor’s micro-architecture to maximize frequency, Instructions Per Cycle, and minimize data, control, and structural hazards.
These decisions combined with improvements in semiconductor processing have given us the processor revolution of the last thirty to forty years. As Denard Scaling and Moore’s Law broke down, to continue to realize computational improvements to solve tomorrow’s challenges, a new paradigm from processor architect to software engineer is required.
To read the full article, click here
Related Semiconductor IP
- All-In-One RISC-V NPU
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
- RISC-V CPU IP
- Data Movement Engine - Best in class multi-core high-performance AI-enabled RISC-V Automotive CPU for ADAS, AVs and SDVs
- Low Power RISCV CPU IP
Related Blogs
- The interface makes the FPGA
- Intel’s Atom-based Tunnel Creek SOC with integrated PCIe interface opens new era for embedded developers
- Will Apple Choose AMD's Fusion Chips Over NVIDIA?
- Actel's "smart fusion" with Microsemi a top draw!
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility