Defining the software/hardware interface: A new paradigm enabled by Codasip Studio Fusion
Before there was a mainstream open standard Instruction Set Architecture (ISA) like RISC-V, a computer processor’s software/hardware interface was generally defined by processor architects. The decisions of the instructions set, multi-issue, out-of-order, speculation, branch prediction or multi-core were to accelerate general purpose or a class, such as Digital Signal Processing (DSP), of computing. The optimal solutions required a deep understanding of the processor’s micro-architecture to maximize frequency, Instructions Per Cycle, and minimize data, control, and structural hazards.
These decisions combined with improvements in semiconductor processing have given us the processor revolution of the last thirty to forty years. As Denard Scaling and Moore’s Law broke down, to continue to realize computational improvements to solve tomorrow’s challenges, a new paradigm from processor architect to software engineer is required.
To read the full article, click here
Related Semiconductor IP
- RISC-V CPU IP
- RISC-V Vector Extension
- RISC-V Real-time Processor
- RISC-V High Performance Processor
- 32b/64b RISC-V 5-stage, scalar, in-order, Application Processor. Linux and multi-core capable. Maps upto ARM A-35. Optimal PPA.
Related Blogs
- The interface makes the FPGA
- Intel’s Atom-based Tunnel Creek SOC with integrated PCIe interface opens new era for embedded developers
- Will Apple Choose AMD's Fusion Chips Over NVIDIA?
- Actel's "smart fusion" with Microsemi a top draw!
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview