Moore's Law: Wanted, Dead or Alive
Moore’s Law is not dead but the vital signs have clearly changed. That was the key message I heard from Dr. Subramanian Iyer, Fellow and Chief Technologist at the IBM Systems & Technology Group, during the GSA Silicon Summit held on April 26 at the Computer History Museum in Mountain View, California. Iyer pointed out that process complexity has grown from node to node. Yes we already knew that—but in earlier node transitions the increased processing cost was offset by the doubled number of additional transistors per unit area you get for each jump. Iyer projected a graph showing that the reduced effective cost per transistor stops falling after the 32/28nm node. Here’s the graph:
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Blogs
- Moore’s Law and 40nm Yield
- Moore's Law and 28nm Yield
- Moore's (Empirical Observation) Law!
- Intel says Moore's Law alive and well and living at 32nm
Latest Blogs
- UCIe D2D Adapter Explained: Architecture, Flit Mapping, Reliability, and Protocol Multiplexing
- RT-Europa: The Foundation for RISC-V Automotive Real-Time Computing
- Arm Flexible Access broadens its scope to help more companies build silicon faster
- Embedded Security explained: IPsec and IKEv2 for embedded Systems
- Deploying StrongSwan on an Embedded FPGA Platform, IPsec/IKEv2 on Arty Z7 with PetaLinux and PQC