Exploring AI / Machine Learning Implementations with Stratus HLS
A lot of AI design is done in software and, while much of it will remain there, increasing numbers of designs are finding their way into hardware. There are multiple reasons for this including the important goals of achieving lower power or higher performance for critical parts of the AI process. Imagine you need dramatically improved rate of object recognition in automated-driving applications.
Implementing an AI application in hardware presents some key challenges for the designer.
- Need to explore multiple algorithms and architectures, typically using a framework such as TensorFlow or Caffe
- Need to qualify power, performance, area, and accuracy trade-offs of various architectures
- Need a rapid path from the models to production silicon
In this article, I'll describe a flow that starts in the TensorFlow environment, moves into abstract C++ targeted at the Stratus HLS flow, and then into a concrete hardware implementation flow.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Enabling ‘Few-Shot Learning’ AI with ReRAM
- Alif Is Creating SoC Solutions for Machine Learning with Cadence and Arm
- Take your neural networks to the next level with Arm's Machine Learning Inference Advisor
- Empowering your Embedded AI with 22FDX+
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power