GDDR6 Beyond Graphics : Memory for AI,VR, and Autonomous Driving
Modern computer applications rely heavily on graphics processing and rendering which involve a lot of simultaneous mathematical calculations. A typical CPU is not suitable for jobs that require simultaneous processing, which is why the concept of a dedicated Graphics Processing Unit (GPU) was introduced. The GPU has found its scope not only in graphics processing but also several emerging applications like AI, machine learning, VR, autonomous driving, and network routing.
GPU’s require memory which can offer much higher throughput than conventional memories like DDR, since it processes massive chunks of data all at once. The memory must also be capable of providing minimal latency, along with the possibility of simultaneous write/read. As a result, Graphics Double Data Rate (GDDR) memory, a dedicated type of SGRAM for the GPU, came into the picture.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related Blogs
- Autonomous Vehicles: Memory Requirements & Deep Neural Net Limitations
- SSD Interfaces and Performance Effects
- What’s on the Horizon for NAND and DRAM?
- DDR3/DDR2 price crossover reached
Latest Blogs
- CNNs and Transformers: Decoding the Titans of AI
- How is RISC-V’s open and customizable design changing embedded systems?
- Imagination GPUs now support Vulkan 1.4 and Android 16
- From "What-If" to "What-Is": Cadence IP Validation for Silicon Platform Success
- Accelerating RTL Design with Agentic AI: A Multi-Agent LLM-Driven Approach