Autonomous Vehicles: Memory Requirements & Deep Neural Net Limitations
Introduction
According to the National Highway Traffic Safety Administration (NHTSA), various driver assistance technologies are already helping to save lives and prevent injuries. Specific examples include helping drivers avoid making unsafe lane changes, warning of other vehicles when backing up, or automatically braking when a vehicle ahead stops or slows abruptly. The above-mentioned safety technology leverages a wide range of hardware – including sensors, cameras and radar – to help vehicles identify safety risks and warn drivers to avoid crashes and collisions.
Self-Driving Memory Requirements
However, many of these systems are using DRAM-based memory solutions with relatively modest bandwidths. This is because most advanced driver-assistance systems (ADAS) are rated Level 2 and only offer drivers partial automation capabilities. Future self-driving cars (Level 3 – Level 5) will require new generations of memory with significantly increased bandwidths. This additional bandwidth will enable autonomous vehicles to rapidly execute massive calculations and safely implement real-time decisions on roads and highways, with the ultimate goal of doing this without any driver assistance.
Related Semiconductor IP
Related Blogs
- Accelerating Machine Learning Deployment with CEVA Deep Neural Network (CDNN)
- Push-button generation of deep neural networks
- Imagination Technologies' Upgraded GPUs, New Neural Network Core Provide Deep Learning Processing Options
- NVIDIA Previews Open-source Processor Core for Deep Neural Network Inference
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?