Futureproofing Automotive AI to Manage Lifetime Cost
Cars and trucks are expected to continue their 10– to 20-year lifetimes for the foreseeable future, with corresponding implications for electronics reliability as we already know. More challenging is managing long service times for Automotive AI systems, especially given the rapid evolution of AI technology and the need to manage updates to field service problems discovered or regulatory changes. Recalls to upgrade hardware would be a very expensive option. Equally, Automotive AI software model service updates will depend on scalable systems to support service technicians handling many product lines across many locations. Hardware and software must be scalable both to support and simplify updates over long vehicle lifetimes and to support advancing vehicle architectures for new cars.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
Related Blogs
- Automotive Ethernet for vision-based ADAS: Loss, cost, and latency
- FPGA Chiplets Get a Power and Cost Makeover Thanks to New Partnership
- Virtual Platforms from Arm and Partners Available Now to Accelerate and Transform Automotive Development
- Synopsys Collaborates with Arm to Drive Automotive Design Excellence
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production