Futureproofing Automotive AI to Manage Lifetime Cost
Cars and trucks are expected to continue their 10– to 20-year lifetimes for the foreseeable future, with corresponding implications for electronics reliability as we already know. More challenging is managing long service times for Automotive AI systems, especially given the rapid evolution of AI technology and the need to manage updates to field service problems discovered or regulatory changes. Recalls to upgrade hardware would be a very expensive option. Equally, Automotive AI software model service updates will depend on scalable systems to support service technicians handling many product lines across many locations. Hardware and software must be scalable both to support and simplify updates over long vehicle lifetimes and to support advancing vehicle architectures for new cars.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- Parameterizable compact BCH codec
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
Related Blogs
- Virtual Platforms from Arm and Partners Available Now to Accelerate and Transform Automotive Development
- Synopsys Collaborates with Arm to Drive Automotive Design Excellence
- Ultra Ethernet Consortium Set to Enable Scaling of Networking Interconnects for AI and HPC
- Bluetooth LE and UWB in Automotive Extend Capabilities at Lower System Cost
Latest Blogs
- What Does a GPU Have to Do With Automotive Security?
- Physical AI at the Edge: A New Chapter in Device Intelligence
- Rivian’s autonomy breakthrough built with Arm: the compute foundation for the rise of physical AI
- AV1 Image File Format Specification Gets an Upgrade with AVIF v1.2.0
- Industry’s First End-to-End eUSB2V2 Demo for Edge AI and AI PCs at CES