The Role of Coverage in Formal Verification, Part 1 of 3
As outlined in a prior post, new advances in formal and multi-engine technology (like Incisive Enterprise Verifier or "IEV") enables users to do complete verification of design IP using only assertions (i.e. no testbench required!) -- especially for blocks of around 1 million flops or less. Given this premise, it's natural to ask: "OK, but how does formal and multi-engine assertion-based verification (ABV) fit into the coverage and metric-driven work flow that I am (A) familiar with, and (B) know is effective in measuring my progress?" In the following series of blog posts, I'll answer these important questions. To spare you some suspense: conceptually, the coverage-driven verification terms and methodologies you are familiar with when writing testbenches and/or constrained-random stimulus in e or SystemVerilog - terms like "constraints'" "code coverage," and "functional coverage" -- have essentially the same meaning in the formal-centric ABV world.
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- Bluetooth Low Energy 6.0 Scalable RF IP
- All Digital Fractional-N RF Frequency Synthesizer PLL in GlobalFoundries 22FDX
Related Blogs
- How to Speed Up Simulation Coverage Closure with Formal Verification Tools
- Reducing Manual Effort and Achieving Better Chip Verification Coverage with AI and Formal Techniques
- How AI Drives Faster Chip Verification Coverage and Debug for First-Time-Right Silicon
- Raising RISC-V processor quality with formal verification
Latest Blogs
- MIPI: Powering the Future of Connected Devices
- ESD Protection for an High Voltage Tolerant Driver Circuit in 4nm FinFET Technology
- Designing the AI Factories: Unlocking Innovation with Intelligent IP
- Smarter SoC Design for Agile Teams and Tight Deadlines
- Automotive Reckoning: Industry Leaders Discuss the Race to Redefine Car Development