The Role of Coverage in Formal Verification, Part 1 of 3
As outlined in a prior post, new advances in formal and multi-engine technology (like Incisive Enterprise Verifier or "IEV") enables users to do complete verification of design IP using only assertions (i.e. no testbench required!) -- especially for blocks of around 1 million flops or less. Given this premise, it's natural to ask: "OK, but how does formal and multi-engine assertion-based verification (ABV) fit into the coverage and metric-driven work flow that I am (A) familiar with, and (B) know is effective in measuring my progress?" In the following series of blog posts, I'll answer these important questions. To spare you some suspense: conceptually, the coverage-driven verification terms and methodologies you are familiar with when writing testbenches and/or constrained-random stimulus in e or SystemVerilog - terms like "constraints'" "code coverage," and "functional coverage" -- have essentially the same meaning in the formal-centric ABV world.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related Blogs
- How to Speed Up Simulation Coverage Closure with Formal Verification Tools
- Reducing Manual Effort and Achieving Better Chip Verification Coverage with AI and Formal Techniques
- How AI Drives Faster Chip Verification Coverage and Debug for First-Time-Right Silicon
- Raising RISC-V processor quality with formal verification
Latest Blogs
- Shaping the Future of Semiconductor Design Through Collaboration: Synopsys Wins Multiple TSMC OIP Partner of the Year Awards
- Pushing the Boundaries of Memory: What’s New with Weebit and AI
- Root of Trust: A Security Essential for Cyber Defense
- Evolution of AMBA AXI Protocol: An Introduction to the Issue L Update
- An Introduction to AMBA CHI Chip-to-Chip (C2C) Protocol