The Role of Coverage in Formal Verification, Part 1 of 3
As outlined in a prior post, new advances in formal and multi-engine technology (like Incisive Enterprise Verifier or "IEV") enables users to do complete verification of design IP using only assertions (i.e. no testbench required!) -- especially for blocks of around 1 million flops or less. Given this premise, it's natural to ask: "OK, but how does formal and multi-engine assertion-based verification (ABV) fit into the coverage and metric-driven work flow that I am (A) familiar with, and (B) know is effective in measuring my progress?" In the following series of blog posts, I'll answer these important questions. To spare you some suspense: conceptually, the coverage-driven verification terms and methodologies you are familiar with when writing testbenches and/or constrained-random stimulus in e or SystemVerilog - terms like "constraints'" "code coverage," and "functional coverage" -- have essentially the same meaning in the formal-centric ABV world.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- How to Speed Up Simulation Coverage Closure with Formal Verification Tools
- Reducing Manual Effort and Achieving Better Chip Verification Coverage with AI and Formal Techniques
- How AI Drives Faster Chip Verification Coverage and Debug for First-Time-Right Silicon
- Raising RISC-V processor quality with formal verification
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power