Formal verification best practices: investigating a deadlock
In our first episode from last week we focused on best practices when setting up formal verification on a component. Our setup is now ready with protocol checkers to avoid unrealistic scenarios (which also helped find a new bug), and with basic abstractions to improve performances. It’s now time to tackle our real task: reproducing a deadlock bug found using simulation. Let’s dive deep into it.
Reproducing the deadlock bug
To ensure a design is deadlock free, one approach consists in verifying that it is “always eventually” able to respond to a request. The wording is important. Regardless of the current state and the number of cycles we must wait, in the future the design must respond.
To read the full article, click here
Related Semiconductor IP
- AXI Interconnect
- AP Memory UHS PSRAM Controller
- Winbond HyperRAM Controller
- RapidIO Verification IP (VIP)
- Bluetooth 5.3 Dual Mode PHY IP
Related Blogs
- Formal verification best practices to reach your targets
- Formal verification best practices: towards end-to-end properties
- Formal verification best practices: checking data corruption
- Formal verification best practices: sign-off and wrap-up
Latest Blogs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Ceva-XC21 and Ceva-XC23 DSPs: Advancing Wireless and Edge AI Processing
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Empowering your Embedded AI with 22FDX+