Formal verification best practices: investigating a deadlock
In our first episode from last week we focused on best practices when setting up formal verification on a component. Our setup is now ready with protocol checkers to avoid unrealistic scenarios (which also helped find a new bug), and with basic abstractions to improve performances. It’s now time to tackle our real task: reproducing a deadlock bug found using simulation. Let’s dive deep into it.
Reproducing the deadlock bug
To ensure a design is deadlock free, one approach consists in verifying that it is “always eventually” able to respond to a request. The wording is important. Regardless of the current state and the number of cycles we must wait, in the future the design must respond.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related Blogs
- Formal verification best practices to reach your targets
- Formal verification best practices: towards end-to-end properties
- Formal verification best practices: checking data corruption
- Formal verification best practices: sign-off and wrap-up
Latest Blogs
- MIPS P8700 RISC-V Processor for Advanced Functional Safety Systems
- Boost SoC Flexibility: 4 Design Tips for Memory Subsystems with Combo DDR3/4 Interfaces
- High Bandwidth Memory Evolution from First Generation HBM to the Latest HBM4
- Keeping Pace with CXL Specification Revisions
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring