Formal verification best practices: investigating a deadlock
In our first episode from last week we focused on best practices when setting up formal verification on a component. Our setup is now ready with protocol checkers to avoid unrealistic scenarios (which also helped find a new bug), and with basic abstractions to improve performances. It’s now time to tackle our real task: reproducing a deadlock bug found using simulation. Let’s dive deep into it.
Reproducing the deadlock bug
To ensure a design is deadlock free, one approach consists in verifying that it is “always eventually” able to respond to a request. The wording is important. Regardless of the current state and the number of cycles we must wait, in the future the design must respond.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Formal verification best practices to reach your targets
- Formal verification best practices: towards end-to-end properties
- Formal verification best practices: checking data corruption
- Formal verification best practices: sign-off and wrap-up
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power