Evolution of process models, part I
Thirty five years ago, in 1976, the Concorde cut transatlantic flying time to 3.5 hrs, Apple was formed, NASA unveiled the first space shuttle, the VHS vs Betamax wars started, and Barry Manilow’s I Write the Songs saturated the airwaves. Each of those advances, except perhaps Barry Manilow, was the result of the first modern-era, high-production ICs.
During those years, researchers were anticipating the challenges of fabricating ICs that, according to Moore’s Law, would double in transistor count about every two years. Today, the solution to making features that are much smaller than the 193nm light used in photolithography is collectively referred to as computational lithography (CL). Moving forward into double patterning and even EUV Lithography, CL will continue to be a critical ingredient in the design to manufacturing flow. Before we get distracted by today’s lithography woes, let’s look back at the extraordinary path that brought us here.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related Blogs
- 5G Evolution, the road to realizing the full extent of 5G Technology Revolution
- The Evolution of Generative AI up to the Model-Driven Era
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Ethernet Evolution: Trends, Challenges, and the Future of Interoperability
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility